uantification of the second-order nonlinear usceptibility of collagen I using a laser canning microscope

نویسنده

  • rne Erikson
چکیده

ord Hompland atharina de Lange Davies ikael Lindgren orwegian University of Science and Technology epartment of Physics øgskoleringen 5 491 Trondheim, Norway Abstract. Characteristic changes in the organization of fibrillar collagen can potentially serve as an early diagnostic marker in various pathological processes. Tissue types containing collagen I can be probed by pulsed high-intensity laser radiation, thereby generating second harmonic light that provides information about the composition and structure at a microscopic level. A technique was developed to determine the essential second harmonic generation SHG parameters in a laser scanning microscope setup. A rat-tail tendon frozen section was rotated in the xy-plane with the pulsed laser light propagating along the z-axis. By analyzing the generated second harmonic light in the forward direction with parallel and crossed polarizer relative to the polarization of the excitation laser beam, the second-order nonlinear optical susceptibilities of the collagen fiber were determined. Systematic variations in SHG response between ordered and less ordered structures were recorded and evaluated. A 500 m-thick z-cut lithiumniobate LiNbO3 was used as reference. The method was applied on frozen sections of malignant melanoma and normal skin tissue. Significant differences were found in the values of d22, indicating that this parameter has a potential role in differentiating between normal and pathological processes. © 2007 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.2772311

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Low-Power Helium-Neon Laser Irradiation on Collagen Fibril Thickness of Incisized Medial Collateral Ligament of Knee in Rat

Purpose: The aim of the present study is to investigate the effect of low-power Helium-Neon laser (LPL) on collagen fibril thickness of incisized medial collateral ligament of knee joint (MCL) in rat. Materials and Methods: MCL of right hind limb of 35 male adult sprague Dawley rat under general anesthesia were transversly incisized. Rats were randomly divitded into normal, control, first lase...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

  Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

Background  Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...

متن کامل

Chiral imaging of collagen by second-harmonic generation circular dichroism

We provide evidence that the chirality of collagen can give rise to strong second-harmonic generation circular dichroism (SHG-CD) responses in nonlinear microscopy. Although chirality is an intrinsic structural property of collagen, most of the previous studies ignore that property. We demonstrate chiral imaging of individual collagen fibers by using a laser scanning microscope and type-I colla...

متن کامل

Confocal Imaging of Biological Tissues Using Second Harmonic Generation

A confocal microscopy imaging system was devised to selectively detect Second harmonic signals generated by biological tissues. Several types Of biological tissues were examined using this imaging system, including human teeth, bovine blood vessels, and chicken skin. All these tissues generated strong second harmonic signals. There is considerable evidence that the source of these signals in ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007